Forschungsseminar Stochastische Analysis und Stochastik der Finanzmärkte   📅

Institute
Head
P. Bank, Ch. Bayer, D. Becherer, P. Friz, P. Hager, U. Horst, and D. Kreher
Usual time
Thursdays at 16:15 and 17:15
Usual venue
TU Berlin, Institut für Mathematik, Raum MA 042 (Straße des 17. Juni 136)
Number of talks
12
Thu, 11.07.24 at 17:15
TU Berlin, Instit...
Thu, 11.07.24 at 16:15
TU Berlin, Instit...
Thu, 27.06.24 at 17:15
TU Berlin, Instit...
Thu, 27.06.24 at 16:15
TU Berlin, Instit...
Thu, 13.06.24 at 17:15
TU Berlin, Instit...
An infinite-dimensional price impact model
Abstract. In this talk, we introduce an infinite-dimensional price impact process as a kind of Markovian lift of non-Markovian 1-dimensional price impact processes with completely monotone decay kernels. In an additive price impact scenario, the related optimal control problem is extended and transformed into a linear-quadratic framework. The optimal strategy is characterized by an operator-valued Riccati equation and a linear backward stochastic evolution equation (BSEE). By incorporating stochastic in-flow, the BSEE is simplified into an infinite-dimensional ODE. With appropriate penalizations, the well-posedness of the Riccati equation is well-known. This is a joint work with Prof. Dirk Becherer and Prof. Christoph Reisinger.
Thu, 13.06.24 at 16:15
TU Berlin, Instit...
Stochastic Fredholm equations: a passe-partout for propagator models with cross-impact, constraints and mean-field interactions
Abstract. We will provide explicit solutions to certain systems linear stochastic Fredholm equations. We will then show the versatility of these equations for solving various optimal trading problems with transient impact including: (i) cross-impact (multiple assets), (ii) constraints on the inventory and trading speeds, and (iii) N-player game and mean-field interactions (multiple traders). Based on joint works with Nathan De Carvalho, Eyal Neuman, Huyên Pham, Sturmius Tuschmann, and Moritz Voss.
Thu, 30.05.24 at 17:15
TU Berlin, Instit...
Solving probability measure uncertainty by nonlinear expectations
Abstract. In 1921, economist Frank Knight published his famous 'Uncertainty, Risk and Profit' in which his challenging is still largely open. In this talk we explain why nonlinear expectation theory provides a powerful and fundamentally important mathematical tool to this century problem.
Thu, 30.05.24 at 16:15
TU Berlin, Instit...
General Equilibrium with Unhedgeable Fundamentals and Heterogeneous Agents
Abstract. We examine the implications of unhedgeable fundamental risk, combined with agents' heterogeneous preferences and wealth allocations, on dynamic asset pricing and portfolio choice. We solve in closed form a continuous-time general equilibrium model in which unhedgeable fundamental risk affects aggregate consumption dynamics, rendering the market incomplete. Several long-lived agents with heterogeneous risk-aversion and time-preference make consumption and investment decisions, trading risky assets and borrowing from and lending to each other. We find that a representative agent does not exist. Agents trade assets dynamically. Their consumption rates depend on the history of unhedgeable shocks. Consumption volatility is higher for agents with preferences and wealth allocations deviating more from the average. Unhedgeable risk reduces the equilibrium interest rate only through agents' heterogeneity and proportionally to the cross-sectional variance of agents' preferences and allocations.
Thu, 16.05.24 at 16:15
TU Berlin, Instit...
Extreme value theory in the insurance sector
Abstract. Dusty insurance industry or buzzword bingo? Not with us! We work both in the world of insurance industry and management consulting, which means for us no two days are the same. Our practice supports many of the world’s leading organizations by using modern data analytics and complex mathematical models. Thereby we quantify the risks of the insurance industry, making risks visible and manageable. We work together with our clients to assess their strategic priorities, increase economic value, optimize capital, and drive organizational performance. Sina Dahms, Matthias Drees, and Lea Fernandez from Deloitte will talk about extreme value theory and its applications in insurance and will give exclusive insights into the day-to-day work of an actuarial consultant. Sina has a PhD in financial mathematics from HU Berlin, Matthias holds degrees in mathematics and physics from universities in Munich, Cambridge and Tokyo, and Lea recently finished her studies of mathematics and physics at the TU Berlin.
Thu, 02.05.24 at 17:15
TU Berlin, Instit...
Reduced-form framework and affine processes with jumps under model uncertainty
Abstract. We introduce a sublinear conditional operator with respect to a family of possibly non-dominated probability measures in presence of multiple ordered default times. In this way we generalize the results in [3] where a consistent reduced-form framework under model uncertainty for a single default is developed. Moreover, we present a probabilistic construction of Rd-valued non-linear affine processes with jumps, which allows to model intensities in a reduced-form framework. This yields a tractable model for Knightian uncertainty for which the sublinear expectation of a Markovian functional can be calculated via a partial integro-differential equation. This talk is based on [1] and [2].
Thu, 18.04.24 at 17:15
TU Berlin, Instit...
Local Volatility Models for Commodity Forwards
Abstract. We present a dynamic model for forward curves in commodity markets, which is defined as the solution to a stochastic partial differential equation (SPDE) with state-dependent coefficients, taking values in a Hilbert space H of real valued functions. The model can be seen as an infinite dimensional counterpart of the classical local volatility model frequently used in equity markets. We first investigate a class of point-wise operators on H, which we then use to define the coefficients of the SPDE. Next, we derive growth and Lipchitz conditions for coefficients resulting from this class of operators to establish existence and uniqueness of solutions. We also derive conditions that ensure positivity of the entire forward curve. Finally, we study the existence of an equivalent measure under which related traded, 1-dimensional projections of the forward curve are martingales. Our approach encompasses a wide range of specifications, including a Hilbert-space valued counterpart of a constant elasticity of variance (CEV) model, an exponential model, and a spline specification which can resemble the S shaped local volatility function that well reproduces the volatility smile in equity markets. A particularly pleasant property of our model class is that the one-dimensional projections of the curve can be expressed as one-dimensional stochastic differential equation. This provides a link to models for forwards with a fixed delivery time for which formulas and numerical techniques exist. In a first numerical case study we observe that a spline based, S shaped local volatility function can calibrate the volatility surface in electricity markets. Joint work with Silvia Lavagnini (BI Norwegian Business School)
Thu, 18.04.24 at 16:15
TU Berlin, Instit...
A path-dependent PDE solver based on signature kernels
Abstract. We develop a provably convergent kernel-based solver for path-dependent PDEs (PPDEs). Our numerical scheme leverages signature kernels, a recently introduced class of kernels on path-space. Specifically, we solve an optimal recovery problem by approximating the solution of a PPDE with an element of minimal norm in the signature reproducing kernel Hilbert space (RKHS) constrained to satisfy the PPDE at a finite collection of collocation paths. In the linear case, we show that the optimisation has a unique closed-form solution expressed in terms of signature kernel evaluations at the collocation paths. We prove consistency of the proposed scheme, guaranteeing convergence to the PPDE solution as the number of collocation points increases. Finally, several numerical examples are presented, in particular in the context of option pricing under rough volatility. Our numerical scheme constitutes a valid alternative to the ubiquitous Monte Carlo methods. Joint work with Cristopher Salvi (Imperial College London).